facebook
favorite button
super instructor icon
Professeur fiable
Ce professeur a un délai et un taux de réponse très élevé, démontrant un service de qualité et sa fidélité envers ses élèves.
member since icon
Depuis janvier 2021
Professeur depuis janvier 2021
initier les enfants de 7 à 15 ans à l'informatique
course price icon
Àpd 44.75 € /h
arrow icon
1. Introduction à l'informatique:
- Découverte de l'ordinateur : Matériel et Logiciel
- Notions de base sur l'informatique et l'utilisation de l'ordinateur
- Exploration de l'interface utilisateur: bureau, barre des tâches, icônes, etc.

2. Apprentissage des compétences de navigation:
- Comment naviguer sur Internet en toute sécurité
- Découverte des moteurs de recherche et des navigateurs Web
- Comment créer et gérer des favoris

3. Initiation à la programmation:
- Comprendre le concept de programmation
- Apprendre les bases de la programmation avec des langages simples
- Utiliser des blocs de programmation visuelle pour créer des programmes simples
- Comprendre les variables, les boucles et les conditions de programmation et leur utilisation

4. Découverte des suites logicielles:
- Utilisation des suites Microsoft Office et de Google Apps pour créer des documents, des présentations et des feuilles de calcul
- Introduction aux logiciels de conception graphique tel que GIMP, Canva, etc.

5. Sécurité informatique:
- Les règles de sécurité de base pour protéger leur environnement numérique
- Comment éviter les arnaques en ligne et les virus informatiques

6. Conclusion:
- Résumé de la formation
- Les opportunités professionnelles dans l'informatique

Ce programme d'étude peut être adapté pour répondre aux besoins individuels des enfants, en fonction de leur niveau de compétences et d'intérêt.
Informations supplémentaires
apportez votre laptop
Lieu
green drop pin icongreen drop pin icon
|
Utilisez Ctrl + molette pour zoomer !
zoom in iconzoom out icon
location type icon
Cours au domicile de l'élève :
  • Autour de Douala, Cameroun
location type icon
Cours chez le professeur :
  • Douala, Cameroun
location type icon
En ligne depuis le Cameroun
Présentation
Mes élèves m'appellent professeur, j'aime le sport et les animaux je me réveille toujours a 5h lol. J'aime enseigner cela me permet de découvrir de nouvelle chose et de courtillier un maximum de personne et aussi gagner de l'argent, j'aime transmettre mes connaissances et discuter avec les élèves et j'aime les élèves ouvert et sympa.
J'ai une méthodes d'enseignement très simple qui pousse l'élèves a ce surpasser et atteindre ces objectifs.
Education
Ingénieur Informatique en Administration système et réseau, Baccalaureat scientifique série C, j'ai effectuer mon cursus a IAI (institut Africain d'informatique)
Expérience / Qualifications
Certification de Premier secours (Croix rouge), Président d'une association, Meilleur Professeur 2016, Permis de conduire
Age
Enfants (4-6 ans)
Enfants (7-12 ans)
Adolescents (13-17 ans)
Adultes (18-64 ans)
Seniors (65+ ans)
Niveau du Cours
Débutant
Intermédiaire
Avancé
Durée
60 minutes
Enseigné en
français
anglais
Disponibilité semaine type
(GMT -05:00)
New York
at teacher icon
Cours chez le professeur et par webcam
at home icon
Cours à domicile
Mon
Tue
Wed
Thu
Fri
Sat
Sun
00-04
04-08
08-12
12-16
16-20
20-24
Description du cours :

Titre : Cours de programmation pour débutants
Durée : 8 semaines (16 sessions de 2 heures chacune)

Description :
Ce cours de programmation pour débutants est conçu pour les élèves moyens qui souhaitent acquérir les bases solides de la programmation. Que vous soyez intéressé par Python, JavaScript, HTML, CSS ou PHP, ce cours vous fournira les connaissances essentielles pour créer vos propres programmes et applications.

Grâce à des explications claires, des exemples concrets et des exercices pratiques, vous développerez votre compréhension des principaux concepts de programmation et vous serez en mesure d'appliquer ces connaissances dans des projets concrets.

Plan de cours :

Semaine 1-2 : Introduction à la programmation et concepts fondamentaux
- Présentation des langages de programmation (Python, JavaScript, HTML, CSS, PHP)
- Comprendre les variables, les types de données et les opérations de base
- Introduction aux structures de contrôle (boucles, conditions)
- Les fonctions et l'organisation du code

Semaine 3-4 : Programmation orientée objet
- Comprendre les concepts de base de la programmation orientée objet
- Création de classes et d'objets
- Utilisation des attributs et des méthodes

Semaine 5-6 : Développement web
- Introduction à HTML et CSS
- Création de pages web statiques
- Utilisation de JavaScript pour interagir avec les éléments de la page

Semaine 7-8 : Applications et projets
- Utilisation de Python, JavaScript, HTML, CSS ou PHP pour créer des programmes et des applications simples
- Création d'un projet final pour mettre en pratique toutes les compétences acquises

Chaque session comprendra une partie théorique suivie d'exercices pratiques pour consolider les concepts abordés. Vous serez également encouragé à poser des questions et à travailler sur des projets personnels pour renforcer votre apprentissage.

Rejoignez ce cours passionnant et développez vos compétences en programmation, vous serez prêt à créer vos propres programmes et applications en un rien de temps !
Lire la suite
Cours de préparation au examen officiel Baccalauréat Probatoire et BEPC également classe intermédiaire sur toute les matières scientifiques et en bonus informatique.
Des connaissances dans les classes extérieurs sont un plus mais sinon un bref résumé du cours sera fait avant de commencer la leçon
Lire la suite
Cours Similaires
arrow icon previousarrow icon next
verified badge
Léon
Cours suites numériques

I – Généralités
Une suite numérique est une application de N dans R.
• Suite bornée
Une suite (Un) est majorée s'il existe un réel A tel que, pour tout n, Un ≤ A. On dit que A est un majorant de la suite.
Une suite (Un) est minorée s'il existe un réel B tel que, pour tout n, B ≤ un. On dit
que B est un minorant de la suite.
Une suite est dite bornée si elle est à la fois majorée et minorée, c'est-à-dire s'il
existe M tel que |Un| ≤ M pour tout n.

• Suite convergente

La suite (Un) est convergente vers l ∈ R si :
∀ε>0 ∃n0 ∈ N ∀n ≥ n0 |un−l| ≤ ε.
Une suite qui n'est pas convergente est dite divergente.
Lorsqu'elle existe, la limite d'une suite est unique.
La suppression d'un nombre fini de termes ne modifie pas la nature de la suite, ni sa limite éventuelle.
Toute suite convergente est bornée. Une suite non bornée ne peut donc pas être convergente.

• Limites infinies

On dit que la suite (un) diverge

Vers +∞ si : ∀A>0 ∃n0∈N ∀n ≥ n0 Un≥A
Vers −∞ si : ∀A>0 ∃n0∈N ∀n≤ n0 Un≤A.

• Limites connues

Pour k>1, α>0, β>0


II Opérations sur les suites

• Opérations algébriques

Si (un) et (vn) convergent vers l et l’, alors les suites (un+vn), (λun) et (unvn) convergent respectivement vers l + l’, ll et ll’.

Si (un) tend vers 0 et si (vn) est bornée, alors la suite (unvn) tend vers 0.

• Relation d'ordre

Si (un) et (vn) sont des suites convergentes telles que l'on ait un ≤ vn pour n≥n0,
alors on a :
Attention, pas de théorème analogue pour les inégalités strictes.

• Théorème d'encadrement

Si, à partir d'un certain rang, un ≤xn≤ vn et si (un) et (vn) convergent vers la
même limite l, alors la suite (xn) est convergente vers l.


III Suites monotones

• Définitions

La suite (un) est croissante si un+1≥un pour tout n;
décroissante si un+1≤un pour tout n;
stationnaire si un+1=un pour tout n.

• Convergence

Toute suite de réels croissante et majorée est convergente.
Toute suite de réels décroissante et minorée est convergente.
Si une suite est croissante et non majorée, elle diverge vers +∞.

• Suites adjacentes

Les suites (un) et (vn) sont adjacentes si :
(un) est croissante ; (vn) est décroissante ;

Si deux suites sont adjacentes, elles convergent et ont la même limite.

Si (un) croissante, (vn) décroissante et un≤vn pour tout n, alors elles convergent vers
l1 et l2. Il reste à montrer que l1=l2 pour qu'elles soient adjacentes.

IV Suites extraites

• Définition et propriétés

– La suite (vn) est dite extraite de la suite (un) s'il existe une application φ de N
dans N, strictement croissante, telle que vn=uφ(n).
On dit aussi que (vn) est une sous-suite de (un).
– Si (un) converge vers l, toute sous-suite converge aussi vers l.

Si des suites extraites de (un) convergent toutes vers la même limite l, on peut conclure que (un) converge vers l si tout un est un terme d'une des suites extraites étudiées.
Par exemple, si (u2n) et (u2n+1) convergent vers l, alors (un) converge vers l.

• Théorème de Bolzano-Weierstrass

De toute suite de réels bornée, on peut extraire une sous-suite convergente.

V Suites de Cauchy

• Définition

Une suite (un) est de Cauchy si, pour tout ε positif, il existe un entier naturel n0 pour lequel, quels que soient les entiers p et q supérieurs ou égaux à n0, on ait |up−uq|<ε.
Attention, p et q ne sont pas liés.

• Propriété

Une suite de réels, ou de complexes, converge si, et seulement si, elle est de
Cauchy




SUITES PARTICULIERES

I Suites arithmétiques et géométriques

• Suites arithmétiques

Une suite (un) est arithmétique de raison r si :

∀ n∈N un+1=un+r

Terme général : un =u0+nr.

Somme des n premiers termes :


• Suites géométriques

Une suite (un) est géométrique de raison q≠0 si :

∀ n∈N un+1=qun.

Terme général : un=u0qn

Somme des n premiers termes :

II Suites récurrentes

• Suites récurrentes linéaires d'ordre 2 :

– Une telle suite est déterminée par une relation du type :

(1) ∀ n∈N aUn+2+bUn+1+cUn =0 avec a≠0 et c≠0
et la connaissance des deux premiers termes u0 et u1.
L'ensemble des suites réelles qui vérifient la relation (1) est un espace vectoriel
de dimension 2.
On en cherche une base par la résolution de l'équation caractéristique :

ar2+br+c=0 (E)
– Cas a, b, c complexes
Si ∆≠0,(E) a deux racines distinctes r1et r2. Toute suite vérifiant (1) est alors
du type :
où K1 et K2 sont des constantes que l'on exprime ensuite en fonction de u0 et u1.

Si ∆=0, (E) a une racine double r0=(-b)/2a. Toute suite vérifiant (1) est alors du
type :


– Cas a, b, c réels
Si ∆>0ou ∆=0, la forme des solutions n'est pas modifiée.
Si ∆<0, (E)a deux racines complexes conjuguées r1=α+iβ et r2=α−iβ
que l'on écrit sous forme trigonométrique r1=ρeiθ et r2=ρe-iθ

Toute suite vérifiant (1) est alors du type :


• Suites récurrentes un+1=f(un)

– Pour étudier une telle suite, on détermine d'abord un intervalle I contenant toutes
les valeurs de la suite.
– Limite éventuelle
Si (un) converge vers l et si f est continue en l, alors f(l)=l.
– Cas f croissante
Si f est croissante sur I, alors la suite (un) est monotone.
La comparaison de u0 et de u1 permet de savoir si elle est croissante ou décroissante.
– Cas f décroissante
Si f est décroissante sur I, alors les suites (u2n) et (u2n+1) sont monotones et de
sens contraire




Fait par LEON
message icon
Contacter Ronald
repeat students icon
Le premier cours est couvert par notre Garantie Le-Bon-Prof
Cours Similaires
arrow icon previousarrow icon next
verified badge
Léon
Cours suites numériques

I – Généralités
Une suite numérique est une application de N dans R.
• Suite bornée
Une suite (Un) est majorée s'il existe un réel A tel que, pour tout n, Un ≤ A. On dit que A est un majorant de la suite.
Une suite (Un) est minorée s'il existe un réel B tel que, pour tout n, B ≤ un. On dit
que B est un minorant de la suite.
Une suite est dite bornée si elle est à la fois majorée et minorée, c'est-à-dire s'il
existe M tel que |Un| ≤ M pour tout n.

• Suite convergente

La suite (Un) est convergente vers l ∈ R si :
∀ε>0 ∃n0 ∈ N ∀n ≥ n0 |un−l| ≤ ε.
Une suite qui n'est pas convergente est dite divergente.
Lorsqu'elle existe, la limite d'une suite est unique.
La suppression d'un nombre fini de termes ne modifie pas la nature de la suite, ni sa limite éventuelle.
Toute suite convergente est bornée. Une suite non bornée ne peut donc pas être convergente.

• Limites infinies

On dit que la suite (un) diverge

Vers +∞ si : ∀A>0 ∃n0∈N ∀n ≥ n0 Un≥A
Vers −∞ si : ∀A>0 ∃n0∈N ∀n≤ n0 Un≤A.

• Limites connues

Pour k>1, α>0, β>0


II Opérations sur les suites

• Opérations algébriques

Si (un) et (vn) convergent vers l et l’, alors les suites (un+vn), (λun) et (unvn) convergent respectivement vers l + l’, ll et ll’.

Si (un) tend vers 0 et si (vn) est bornée, alors la suite (unvn) tend vers 0.

• Relation d'ordre

Si (un) et (vn) sont des suites convergentes telles que l'on ait un ≤ vn pour n≥n0,
alors on a :
Attention, pas de théorème analogue pour les inégalités strictes.

• Théorème d'encadrement

Si, à partir d'un certain rang, un ≤xn≤ vn et si (un) et (vn) convergent vers la
même limite l, alors la suite (xn) est convergente vers l.


III Suites monotones

• Définitions

La suite (un) est croissante si un+1≥un pour tout n;
décroissante si un+1≤un pour tout n;
stationnaire si un+1=un pour tout n.

• Convergence

Toute suite de réels croissante et majorée est convergente.
Toute suite de réels décroissante et minorée est convergente.
Si une suite est croissante et non majorée, elle diverge vers +∞.

• Suites adjacentes

Les suites (un) et (vn) sont adjacentes si :
(un) est croissante ; (vn) est décroissante ;

Si deux suites sont adjacentes, elles convergent et ont la même limite.

Si (un) croissante, (vn) décroissante et un≤vn pour tout n, alors elles convergent vers
l1 et l2. Il reste à montrer que l1=l2 pour qu'elles soient adjacentes.

IV Suites extraites

• Définition et propriétés

– La suite (vn) est dite extraite de la suite (un) s'il existe une application φ de N
dans N, strictement croissante, telle que vn=uφ(n).
On dit aussi que (vn) est une sous-suite de (un).
– Si (un) converge vers l, toute sous-suite converge aussi vers l.

Si des suites extraites de (un) convergent toutes vers la même limite l, on peut conclure que (un) converge vers l si tout un est un terme d'une des suites extraites étudiées.
Par exemple, si (u2n) et (u2n+1) convergent vers l, alors (un) converge vers l.

• Théorème de Bolzano-Weierstrass

De toute suite de réels bornée, on peut extraire une sous-suite convergente.

V Suites de Cauchy

• Définition

Une suite (un) est de Cauchy si, pour tout ε positif, il existe un entier naturel n0 pour lequel, quels que soient les entiers p et q supérieurs ou égaux à n0, on ait |up−uq|<ε.
Attention, p et q ne sont pas liés.

• Propriété

Une suite de réels, ou de complexes, converge si, et seulement si, elle est de
Cauchy




SUITES PARTICULIERES

I Suites arithmétiques et géométriques

• Suites arithmétiques

Une suite (un) est arithmétique de raison r si :

∀ n∈N un+1=un+r

Terme général : un =u0+nr.

Somme des n premiers termes :


• Suites géométriques

Une suite (un) est géométrique de raison q≠0 si :

∀ n∈N un+1=qun.

Terme général : un=u0qn

Somme des n premiers termes :

II Suites récurrentes

• Suites récurrentes linéaires d'ordre 2 :

– Une telle suite est déterminée par une relation du type :

(1) ∀ n∈N aUn+2+bUn+1+cUn =0 avec a≠0 et c≠0
et la connaissance des deux premiers termes u0 et u1.
L'ensemble des suites réelles qui vérifient la relation (1) est un espace vectoriel
de dimension 2.
On en cherche une base par la résolution de l'équation caractéristique :

ar2+br+c=0 (E)
– Cas a, b, c complexes
Si ∆≠0,(E) a deux racines distinctes r1et r2. Toute suite vérifiant (1) est alors
du type :
où K1 et K2 sont des constantes que l'on exprime ensuite en fonction de u0 et u1.

Si ∆=0, (E) a une racine double r0=(-b)/2a. Toute suite vérifiant (1) est alors du
type :


– Cas a, b, c réels
Si ∆>0ou ∆=0, la forme des solutions n'est pas modifiée.
Si ∆<0, (E)a deux racines complexes conjuguées r1=α+iβ et r2=α−iβ
que l'on écrit sous forme trigonométrique r1=ρeiθ et r2=ρe-iθ

Toute suite vérifiant (1) est alors du type :


• Suites récurrentes un+1=f(un)

– Pour étudier une telle suite, on détermine d'abord un intervalle I contenant toutes
les valeurs de la suite.
– Limite éventuelle
Si (un) converge vers l et si f est continue en l, alors f(l)=l.
– Cas f croissante
Si f est croissante sur I, alors la suite (un) est monotone.
La comparaison de u0 et de u1 permet de savoir si elle est croissante ou décroissante.
– Cas f décroissante
Si f est décroissante sur I, alors les suites (u2n) et (u2n+1) sont monotones et de
sens contraire




Fait par LEON
Garantie Le-Bon-Prof
favorite button
message icon
Contacter Ronald